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The method of flux-vector-splitting used in the current study is that of Van Leer'. 
The fluxes split in this manner have the advantage of being continuously differentiable 
at  eigenvalue sign changes and this allows normal shocks to be captured with at  most 
'two interior zones, although in practice only one zone is usually observed. The fluxes as 
originally derived, however did not include the necessary terms appropriate for calculations 
on a dynamic mesh. The extension of the splitting to include these terms while retaining 
the advantages of the original splitting is the main purpose of the present investigation. 
In addition, the use of multiple grids to reduce the computer time is investigated. A 
subiterative procedure to eliminate factorization and linearization errors so that larger 
time steps can be used is also investigated. 

Extend the Van Leer method of flux vector splitting 
for use on moving meshes 

0 Investigate the use o f  multiple grids to reduce 
computer time 
Use of multigrid with a sub-iterative procedure 
to eliminate factorization and linearization errors 
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The upwind differencing in the present work is achieved through the technique of 
flux-vector-splitt,ing where the fluxes are split into forward and backward contributions 
according to the signs' of the eigenvalues of the Jacobian matrices, and differenced ac- 
cordingly. The split-flux differences are implemented as a flux balance across a cell corre- 
sponding to MUSCL (Monotone Upstream-Centered Schemes for Conservation Laws) type 
differencing2. Here, the fluxes at each cell interface are formed from the metric terms at 
the cell interface, and the state variables are obtained by upwind-biased interpolation of 
the conserved variables. 

FLUX VECTOR SPLITTING 
i-1/2 i+1/2 

S p l i t  f l u x e s  i n t o  forward and 
backward c o n t r i b u t i o n s  
F ( Q )  = F+(Q-)  + F- (Q+)  

Use upwind biased approximat ion t o  
s p a t i a l  d e r i v a t i v e s  

I-1 i i +1 

Van Leer s p l i t t i n g  
Cont inuously d i f f e r e n t i a b l e  
Al lows shocks t o  be captured with a t  most 
two ( u s u a l l y  one) i n t e r i o r  zones 

195 



In order to facilitate the derivation of the split fluxes, it is convenient to revert to the 
one-dimensional Euler equations on a moving grid. The one dimensional Euler equations 
express the conservation of mass, momentum, and energy for an inviscid, nonconducting 
gas in the absence of external forces. The flux is written as a function of the density, speed 
of sound, local Mach number relative to the moving grid, and the mesh speed. 

ONE DIMENSIONAL EULER EQUATIONS 

A 

u + e t  
M =  = Mach number r e l a t i v e  t o  moving g r i d  

a 
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In deriving the splittings for a dynamic mesh, several requirements are placed on 
the split fluxes: these requirements are identical to those originally imposed by Van Leer 
for the fixed grid equations, with an additional constraint requiring simply that for zero 
grid speed the split fluxes revert to those for a stationary grid. Eight requirements, are 
ultimately pl'aced on the split fluxes of which the five most important ones are shown. 

REQUIREMENTS FOR VAN LEER SPLITTINGS 

0 &'/ai must have a l l  eigenvalues 2 0 

a h a Q  must have a l l  eigenvalues 5 0 
A 

A A 

0 aF%Q must be continuous 

0 ai ' /aQ must have one eigenvalue vanish f o r  subsonic Mach numbers 
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I With the Mach number defined relative to the grid, the mass flux has the same form 
as that of the fixed grid equations. Therefore the splitting of the mass flux for a moving 
grid is the same as for the fixed grid equations. The momentum flux is split in a similar 
fashion. 

SPLllllNG THE FLUX VECTORS 

0 Mass f l u x  has identical fo rm as f o r  a s t a t i o n a r y  g r i d  

4 J. 

Y -1 2 E t  
-M & - - -  
Y Y 0 

198 



The formation of the energy flux can now be obtained from a combination of the split 
mass and momentum fluxes. The formation of the energy flux in this manner insures its 
degeneracy, thereby guaranteeing shock structures with no more than two interior zones. 

SPLITTING THE FLUX VECTORS 

0 Energy f l u x  formed from combinat ion o f  mass and momentum 
f l u x e s  ensures degeneracy I 

2 
Y 

1 

1 1 
c3 = 

Y2-1 2 ( y2-1 1 

- 
- 

- 
c1 - 

2 ( u 2 - 1 )  

0 Degenerate f l u x  guarantees shock s t r u c t u r e s  with no more 
than two i n t e r i o r  zones ( g e n e r a l l y  one) I 
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The eigenvalues of the Jacobians of the split fluxes are shown for an exemplary grid 
speed. All eigenvalues of F+ are non-negative while all the eigenvalues of F- are non- 
positive. In addition, each has one eigenvalue vanishing for subsonic Mach numbers. The 
differentiability of the fluxes is also indicated in the figure since the eigenvalues are repre- 
sentative of the derivatives of the fluxes in canonical form and all are continuous over the 
Mach number range. 
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The method used to advance the solution in time is an implicit finite volume method3. 
Since implicit methods allow much larger time steps than explicit methods, the allowable 
time step is dictated more by the physics of the flow than by stability considerations. The 
scheme can be either first or second order accurate in time and either first, second or 
third order accurate in space. Since upwindsdifferencing is employed, no explicitly added 
artificial viscosity is needed and is therefore not used. 

TIME ADVANCEMENT ALGORITHM 

Backward time implicit algorithm 
Approximate factorization 
First or second order time accurate 

Finite volume implementation 
No explicity added artificial viscosity 
Explicit boundary conditions 
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The basic algorithm utilizes approximate factorization to obtain the solution at  each 
time step. For three dimensions the algorithm is implemented in three steps, one for 
each spatial direction. Using first order spatial differencing on the implicit side of the 
equation, the scheme requires the solution of a system of block tridiagonal equations in 
each coordinate direction and is completely vectorizable since the operations in each factor 
are independent of the other two. For unsteady calculations, several sub-iterations can be 
used at  each time step to eliminate unwanted factorization and linearization errors. 

THREE-DIMENSIONAL ALGORITHM 

+ = 0 f i r s t  order time 

+ = 1 second order time 
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Steady computations are compared with experiment for the F-5 fighter wing at  four 
freestream Mach numbers and an angle of attack of zero degrees. The mesh used in the 
computations is a 1 2 9 x 3 3 ~ 3 3  C-H mesh corresponding to 129 points along the airfoil and 
wake, 33 points approximately normal to the airfoil, and 33 points in the spanwise direction, 
17 of which are on the wing planform. For each Mach number, an inboard and outboard 
span station are shown, corresponding to y/s=0.174 and y/s=0.8412, respectively where 
y is the coordinate in the spanwise direction and s is the wing semi-span. The results are 
generally in good agreement with the experimental data at  both span stations for all Mach 
numbers. 

F-5 STEADY PRESSURE DISTRIBUTIONS 
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F-5 STEADY PRESSURE DISTRIBUTIONS 
a =  0" Y /S  = 0,8412 

, 8  

, 6  

,4 

,2  

0 

-a2 

,4 

,2  

0 

-e2 

-.4 

l heo ry  129x33~33 
0 Experiment 

,4 

- 2  

0 

- * 2  

,4 

,2 

0 

- e 2  

-,4 

- ,6 

- . 8  

-cP 

0 ,25 ,50 ,75 1,oo 0 25 ,50 ,75 1800 
x/c x/c 

204 



Computational results using both flux-vector-splitting and flux-difference-splitting4 
are compared with experimental data for an NACA 0012 airfoil undergoing forced pitch- 
ing oscillations. The freestream Mach number is 0.755, the reduced frequency is 0.1628 
(based on chord), and the mean and dynamic angles of attack are 0.016 and 2.51 degrees 
respectively., The results were obtained on a 193x33 C-grid using a time step of 0.10 
requiring approximately 500 time steps to compute each pitching cycle. The computed 
pressures using both flux-vector-splitting and flux-difference-splitting compare well with 
the experiment at all angles of attack in the cycle shown. The shocks are all captured very 
sharply with no oscillations. Results for the negative angles of attack are similar. 

UNSTEADY PRESSURE DISTRIBUTION 
NACA 0012 M,= 0,755 k= 0,1628 
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Although the time step allowed by the implicit method is much larger than that al- 
lowed by explicit methods, the time steps used may still be relatively small so that resolving 
the motion requires extensive computational effort, especially for three-dimensional flows 
where the number of grid points used in the discretization of the flowfield may be large. 
The multiple grid method has proven to be effective in reducing the computaional work for 
steady flows, although little work has been done for unsteady flows. Jesperson5 has shown 
that the multigrid concept could be used to advance the solution in time on coarser meshes 
while maintaining first order accuracy in time. The impetus is in reducing the computer 
time by performing some of the calculations on coarser meshes where fewer operations are 
required. 

NONITERATIVE USE OF MULTIPLE GRID LEVELS 

Advance solut ion on coarser g r i d s  where computations 
a re  inexpensive 
A d d i t i o n  o f  r e l a t i v e  t r u n c a t i o n  e r r o r  between 
f i n e  g r i d  and coarser g r i d  main ta ins  h igh  order 
s p a t i a l  accuracy 

F i r s t  order  temporal accuracy 
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Results are shown comparing calculated lift and moment coefficients against experi- 
mental data for the pitching NACA 0012 airfoil previously described. Also shown in the 
figure are results obtained using the noniterative multiple grid technique for the time accu- 
rate calculations. The lift and moment calculations are in excellent agreement between the 
single level and two level cases. With three levels, however, the pitching moment exhibits 
slightly larger disagreement with the single level results. 
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Pressure results are shown at one point in the pitching cycle when one, two, and 
three grids are used. As seen, the pressure distributions between the single level and two 
level cases are virtually indistinguishable; the pressures obtained using three grid levels, 
however, differ somewhat from the other two, particularly at the base of the shock. The 
explanation for this lies partly in the fact that each of the coarse grids is influenced strongly 
by the residual on the finest grid. Therefore, as the number of grid levels is increased, the 
residual which is driving the problem has been evaluated at an earlier point in the cycle. 
When only two grids are employed, the residual on the fine grid can be evaluated at the 
correct angle of attack in the cycle so that no lag in the residual exists. 

PRESSURE DISTRIBUTION FOR SINGLE AND MULTIPLE GRIDS 
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Results indicate that the use of multiple grids can give reasonably accurate results 
while decreasing the computer time. Use of more than two grid levels, however, lea.& to 
increasing errors. 

NONlTERATlVE USE OF MULTIPLE GRID LEVELS 

Solution using two grid levels are virtually 
identicul to single grid solution 
Two time steps are taken with only a slight 
increase in cost over a single step 

Use o f  more than two grids leads to 
increasing errors 
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Unsteady results for the F-5 wing are compared with experiment at  a freestream Mach 
number of 0.95 undergoing forced pitching motion where the mean angle of attack is zero 
degrees, the unsteady amplitude is 0.532 degrees, and the reduced frequency based on root 
chord is 0.264. The results have been computed on a 1 2 9 x 3 3 ~ 3 3  mesh using two grid 
levels and a time step of 0.05 on each grid requiring approximately 250 fine grid time steps 
per pitching cycle. The real and imaginary components of the pressure coefficients are 
compared with experiment at two span stations. As before, the results show reasonable 
comparison with experiment. However, the characteristic pressure spike at  the shock is 
somewhat aft of the experimental results indicating that viscous effects may be important. 

UNSTEADY PRESSURE FOR F-5 WING 
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At each time step, several iterations of the algorithm may be carried out in order to 
eliminate factorization and linearization errors. These subiterations may be done using 
a multigrid method to accelerate the convergence at  each time step. The benefits of the 
subiterations are observed to be generally offset by the extra computational work required 
a t  each time step. 

ITERATIVE MULTIGRID ALGORITHM 

M (61t1 - il) = -a tL (Q1)  

Repeated i t e r a t i o n s  a t  each t ime step w i l l  e l iminate 
f a c t o r i z a t i o n  and l i n e a r i z a t i o n  e r ro rs  so larger 
time steps can be taken 
Use o f  mu l t ig r id  method accelerates convergence 

Benef i t s  o f  larger  t i m e  step genera l ly  o f f s e t  

May be more b e n e f i c i a l  f o r  incomplete l i nea r i za t i ons  
by ex t ra  computational work 

o r  with "frozen" f l u x  Jacobians 
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CONCLUSIONS 

Van Leer method o f  f l u x  v e c t o r  s p l i t t i n g  extended 
for use on dynamic g r i d s  
Use o f  coarser  g r i d s  r e s u l t  i n  s u b s t a n t i a l  reduc t ion  
o f  computer t ime with v i r t u a l l y  no l o s s  i n  accuracy 
Use o f  m u l t i g r i d  t o  e l i m i n a t e  f a c t o r i z a t i o n  and 
1 i n e a r i z a t  ion e r r o r  o n l y  m a r g i n a l l y  benef i c i a l  
Resu l t s  compare favo rab ly  with experiment f o r  
two and th ree  dimensional  t e s t  cases 
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